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- Whoam I?

* Managing the Azure Systems Research group
(aka.ms/azsr)

* We do research in all aspects of cloud infrastructure
* | am not speaking for Azure Functions ©

Context

- | mention a lot of works here

* Most not mine!
* Any errors or omissions are my fault!

 Representing many, from Microsoft and external
collaborators

B® Microsoft

Azure Systems Research

Cloud systems innovation at the core of Azure
aka.ms/AzSR




“Research Challenges for a
Future Serverless Cloud”

s the future of the cloud serverless?



What is e Operationally

* “No-ops” — (almost) no configuration

serverless?* + Autoscaling down to 0

* Pay-per-use (rather than per allocation)
* Fine-grained billing
* Many services fit these
* e.g., Serverless DBs, KVS, OpenAl, ...
* Focus: serverless custom code
* Most popular: Function-as-a-Service, Containers-as-a-

rvi
*YDMV Service



What is  Function-as-a-Service

* First model of mostly general computing to have all

Serve rleSS?* those characteristics

* Well-defined life-cycle: triggers, invocation

e Platform has access to source
* Optimization opportunity

e Limitations in duration, memory, communication, state
* Short, small, ephemeral, stateless

* Easier to pack, measure, autoscale, move!

*YDMV * Can improve resource utilization, sustainability



s the future of the cloud serverless?

= Azure
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Time spent TWICE
building

serverless app

@adrianco, AWS, “Serverless First”

All else being equal: rational choice for users
+ competition among providers:
probably yes!




“...more than 20 percent of global enterprises will have
deployed serverless computing technologies by 2020.”
Gartner, Dec 2018

1 Reasons

Why Serverless is the Future
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Steps Back
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“. we pPredict that (-..) serverless Computing wil| grow to dominate the

future of cloud computing.”



Serverless
today

(all else is not equal)

e FaaS is used mostly for simple or coarse-grained tasks
» Stateless, embarrassingly parallel tasks, simple workflows

e ETL, software testing, APl middleware, image processing, etc.
Glue to other serverless backends

* Lots of problems are limiting scope

Poor performance (vs time to run actual code)
Poor handling of state

ﬁorgposition, error handling, communication, coordination are
ar

No accelerators
Very resource-inefficient and costly for serverless provider

* Orders of magnitude too slow and inefficient for many
“killer” apps

Microservices, ML inference, ...



prime V|geo | Homepage Our Innovation

Scaling up the Prime Video

audio/video monitoring service and
reducing costs by 90%

The move from a distributed microservices architecture to a monolith
application helped achieve higher scale, resilience, and reduce costs.

Marcin Kolny
Mar 22, 2023

Initially built with Lambda and Step Functions
e “(...) good choice for building the service quickly.”

Too many state transitions on StepFunctions (slow, SS)
Every frame -> S3 -> Lambda (S$)

Moved to Elastic Container Service

* Frame data does not leave container
* Had to replicate containers, implement load balancer manually



How do we get there?

e Radically increase
* Scope: what is serverless good for?
* From x% -> 99% of applications
* Performance: closer to hardware limits
* From ms -> s
 Efficiency: make it cost effective

 Time: minimize overheads (non-billable time!)
* Space: from 102 to 10° per node

A
Scope

X% -> 99%

Efficiency
Density/cost

Performance
102 -> 10°

ms -> s
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| ncreasi ng e “Serverless should be the default choice

Only go away for niche use cases.”
Sebastian Burckhardt (paraphrased)

scope



Increasing * Programming model

* Lots of great research here

SCO p e  Many “X as serverless” papers
Stateful computation

e Azure Durable Functions, Step Functions
Correct

* Beldi [OSDI’'20]
Transformation

* Crucial [ACM ToSEM v31i3], Wukong [SoCC’20]



Increasing * Improving performance
scope * Reducing overheads

* Reducing complexity

* and lots of other things must be right

e Security, debugging, observability, pricing, ...



With Great Freedom Comes Great Opportunity:
Rethinking Resource Allocation for
Serverless Functions

Muhammad Bilal* Marco Canini
IST(ULisboa)/INESC-ID and UCLouvain KAUST
Rodrigo Fonseca Rodrigo Rodrigues
. Azure Systems Research IST(ULisboa)/INESC-ID
| n C re a S l n g EuroSys’23, Wednesday 14:50
scope * Changes the interface to tangibles:

* Provider chooses resources (CPU, memory, arch)

* Exposes Price, Performance choices
* Points in the Pareto front or
 Best point given a user preference for S or perf
* Best performance given a budget

e Could also include carbon



How do we get there?

A

* Radically increase Scope
e Scope: what is serverless good for? X% ->99%
* From x% -> 99% of applications
* Performance: closer to hardware limits
* From ms -> s
 Efficiency: make it cost effective

* Time: minimize overheads (non-billable time!) Performance
* Space: from 102 to 10° per node ms -> Us

Efficiency
Density/cost
102 -> 10°

16



Provider
challenges

Performance
and
efficiency

= = =

S
e

© Jorge Royan / http//www.royan.com.ar / CC BY-SA3.0

\\



http://www.royan.com.ar/
https://creativecommons.org/licenses/by-sa/3.0/

Performance and efficiency

Legend: V' - Feature helps achieve the goal
C - Feature conflicts with the goal
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Fast cold starts

Dispatch Keep-alive

d/elay \/ \

Cold ‘ ‘ Decommission
Sta/rtl>
v >Time

-

Billed

A
\ 4

Reserved

* A lot of research!
e 34 out of 164 papersin [1]

e Goal: from many seconds to sub-ms

[1] Jinfeng Wen et al. “Rise of the Planet of Serverless Computing: A Systematic Review”. ACM TOSEM, Jan 2023



Fast cold starts

* Snapshots
e Catalyst [ASPLOS’19], REAP[ASPLOS’20], FaaSnap [EuroSys’22],
Faasm [ATC’20], Virtines [EuroSys’22],...

e Sharing compiler (JIT) state
* Hot starts [HotOS’21]

* Minimalist environment
* Firecracker [NSDI’20], Virtines, Faasm,...

* Reducing cold start numbers
* Serverless in the Wild [ATC’19], FaasCache [ASPLOS’21]



Fast cold starts — scale out

* Increase scope to very elastic applications
* E.g., wide DAGs

e Efficient control plane is critical and under-studied
* Networking: Particle [SoCC’20], Mohan et al. [HotCloud’19]
* Do we always need full-fledged networking?

* Next session:

* Work in Progress: The Neglected Cost of Serverless Cluster
Management. Lazar Cvetkovi¢ (ETH Zirich); me; Ana Klimovic (ETH Zlrich)

* Cluster schedulers not designed to schedule very ephemeral sandboxes
 What is special about serverless for cluster schedulers?



Containers VMs Unikernel SFI Faaslet

. Memory safety v v v v v
Cold starts & hypervisors — ; mombbe 7 2 ¢ % 7
2 Efficient state sharing X X X X v
Shared filesystem v X X v v
.. Initialisation time 100ms 100ms 10ms 10ps 1ms
g § Memory footprint MBs MBs KBs Bytes KBs
4= Multi-language v v v X v

* Tradeoff between isolation cold starts?

 Faasm [ATC’20]
* Firecracker [NSDI’20], REAP [ASPLOS’20], FaaSnap [EuroSys’22]
* Virtines [EuroSys’22]

time (ms)
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93
Record phase input A, test phase input B

cO

FaaSnap [EuroSys’22]

Table 1: Isolation approaches for serverless (Initialisation times
include ahead-of-time snapshot restore where applicable [16,25,61].)

AMD EPYC 7281 (Server)

Process-
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pthread
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Wasp+CA-

vmrun-

e .
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%%..
%wm
M+W_"m .

~5Us

104 105 108

Latency (cycles)

~50us
Virtines [EuroSys’22]

~500us



Performance and Efficiency

Legend: V' - Feature helps achieve the goal
C - Feature conflicts with the goal
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Fast warm starts

Cloudburst [VLDB’20]

* Two components:

* |Invocation / Return — “killer microseconds”

* Computation — ideally native speeds (but WASM is not bad!)
* Gap to RPC systems: ~2-3 Orders of magnitude, ms -> us

Laten @

E;%ﬂﬁ.ilmﬁ

Dask A+S3 CB (Single)
Cloudburst SAND A+Dynamo Step-Fns A (Single)

Figure 1: Median (bar) and 99th percentile (whisker) latency
for square(increment(x: int)). Cloudburst matches the
best distributed Python systems and outperforms other
FaaS systems by over an order of magnitude (56.1).
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Demikernel [SOSP’21]



Kernel Bypass

Fast warm starts App“caﬂoiJ

(Kernel %’ core

=5 EBS
. NIC packet queues
* Direct access to hardware

» E.g., DPDK + LibOS
* Tight control of threading, core scheduling

Example from Shenango (not the Shenango design)

< shared memory reads/writes

* Conflicts with fast cold start, density oot | oG
. . . serspace process
. Spme o!e5|gns. dedlcatgq cores (polling) <Y PR
* Fixed-size buffers (partition memory) App 2 Network Module
AT A
* Tradeoff 5 o NG

* One copy vs single core polling
e E.g.Shenango [NSDI’19], SNAP [SOSP’19]

* /s Hypervisor

Google’s SNAP design



Fast warm starts

* Instruction pre-fetching
e Jukebox [ISCA’22]: combat thrashing of instruction cache with lukewarm
functions
e Sharing compiler (JIT) state
* Hot starts [HotOS'21]

* Local scheduling

* e.g., Nigthcore [ASPLOS’21]: bypass cluster scheduler if next function can be
run locally



Performance and efficiency
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Increasing density

* Crucial for cost reduction

e With elasticity, can greatly improve sustainability
* Both scope 2 (electricity), and scope 3 (embedded carbon)



Docker Faaslets Proto-Faaslets vs. Docker

Initialisation 2.8s 5.2 ms 0.5 ms S5.6K x

. . CPU cycles 251M 14K 650 385K x

| ﬂCreaSIHg den5|ty PSS memory 1.3MB  200KB 90 KB 15x
RSS memory 5.0 MB 200 KB 90 KB 57 x

Capacity ~8 K ~70 K >100 K 12 %

Table 3: Comparison of Faaslets vs. container cold starts

(no-op function)

e Minimalist environment
* Faasm [ATC’20]

* Wasm
* 12x more instances than Docker
(no-op function) Isolation Method Creation Rate (per second) Cache Density
. Fi k Firecracker microVM 1.3 450
Irecracker Docker w/ overlay2 fs 5.3 3000
* Smaller VMM, simplified Linux Linux process 45 4200
e Unikernels SEUSS UC 128.6 54000

* e.g., SEUSS [EuroSys’20], page sharing and COW SEUSS [EuroSys’20]

* Even simpler
* Virtines [EuroSys’22]

* Recall conflict with direct HW access (not fundamental)



Performance and efficiency
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Efficient data sharing

e Controlled shared memory
e Faasm allows for shared memory among functions (Wasm)
 Distributed KVS across functions

* Distributed caching among instances
* OFC [EuroSys’21], FaaST [SoCC’21] (many reads still cross the network)

e Efficient storage
* Pocket [OSDI’18], Locust [ATC'21]



Efficient data sharing

* vs Virtualization
* Initially at odds, not fundamental
* Need us-scale signaling to share among VMs, SENDUIPI promising [1]

Relative IPC Latency
(normalized to User IPI)

20.0
18.0
16.0
14.0
12.0
10.0
8.0
6.0
4.0
2.0
0.0

Signal Pipe Eventfd UserIPl User IPI

(blocked) (running)

[1] https://Ipc.events/event/11/contributions/985/attachments/756/1417/User_Interrupts_LPC_2021.pdf



Performance and efficiency
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Locality

* Plain serverless does not have a
notion of locality
* Despite reusing containers

* Palette [EuroSys’23] allows apps to
express locality through hints

e Run where data is

* Programming model
* Pherormone [NSDI’23], Cloudburst
[VLDB’20], Ray [OSDI'18]
* Function shipping
e Shredder [SoCC’19]

Runtime (sec)

Palette Load Balancing: Locality Hints for Serverless

Mania Abdi"*

Northeastern University

José M Faleiro®

Unaffil

iated

Ricardo Bianchini
Azure Systems Research
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Samuel Ginzburg’ Charles Lin"
Princeton University Anyscale Inc.
Tigo Goiri Gohar Chaudhry
Azure Systems Research Azure Systems Research
Daniel S. Berger Rodrigo Fonseca

Azure Systems Research Azure Systems Research

EuroSys’23, Wednesday 14:50
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Slaugther et al., “Task Bench: A Parameterized Benchmark for Evaluating Parallel Runtime Performance.”, SC'20
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How do we get there?

e Radically increase
* Scope: what is serverless good for?
* From x% -> 99% of applications
* Performance: closer to hardware limits
* From ms -> s
 Efficiency: make it cost effective

 Time: minimize overheads (non-billable time!)
* Space: from 102 to 10° per node

A
Scope

X% -> 99%

Efficiency
Density/cost

Performance
102 -> 10°

ms -> s

36



CO N Cl U SiO N » Serverless will be a large part of the future of the cloud!

Exciting set of challenges

* Lots of work going on

Density & multi-tenancy make it more interesting!

"Plenty of room at the bottom*

Do not be restricted by current offerings

* Assume they can change from the inside ;)



Collaborators

* Microsoft
* [Rigo Goiri, Enrique Saurez, Esha Choukse, Ricardo Bianchini, Sameh Elnikety
* Azure Functions Team

e External
* Ana Klimovic, Lazar Cvetkovi¢ (ETH)
Adam Belay, Gohar Chaudhry, Josh Fried (MIT)
Benjamin Carver, Yue Cheng (GMU)
Marco Canini (KAUST), Rodrigo Rodrigues (IST), Muhammad Bilal
Mania Abdi (NEU/Google)
Sam Ginzburg (Princeton), Charles Lin (Anyscale), Jose Faleiro



Thank you & Questions

at Microsoft

Azure Systems Research

Cloud systems innovation at the core of Azure

aka.ms/AzSR

* Contact us for collaborations, visits, internships & full-time positions!
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