
Research Challenges for a
Future Serverless Cloud

Rodrigo Fonseca

Azure Systems Research

SESAME Workshop

Rome, Italy, May 8, 2023

Context  Who am I?

• Managing the Azure Systems Research group
(aka.ms/azsr)

• We do research in all aspects of cloud infrastructure

 I am not speaking for Azure Functions ☺

 I mention a lot of works here

• Most not mine!
• Any errors or omissions are my fault!

 Representing many, from Microsoft and external
collaborators

Is the future of the cloud serverless?

“Research Challenges for a
Future Serverless Cloud”

What is
serverless?*

• Operationally

• “No-ops” – (almost) no configuration
• Autoscaling down to 0
• Pay-per-use (rather than per allocation)
• Fine-grained billing

• Many services fit these

• e.g., Serverless DBs, KVS, OpenAI, ...

• Focus: serverless custom code

• Most popular: Function-as-a-Service, Containers-as-a-
Service

*YDMV

What is
serverless?*

• Function-as-a-Service

• First model of mostly general computing to have all
those characteristics

• Well-defined life-cycle: triggers, invocation

• Platform has access to source
• Optimization opportunity

• Limitations in duration, memory, communication, state
• Short, small, ephemeral, stateless

• Easier to pack, measure, autoscale, move!

• Can improve resource utilization, sustainability*YDMV

Is the future of the cloud serverless?

All else being equal: rational choice for users
+ competition among providers:

probably yes!

No-ops
No allocation
Pay-per-use

Elastic

@adrianco, AWS, “Serverless First”

“…more than 20 percent of global enterprises will have
deployed serverless computing technologies by 2020.”

Gartner, Dec 2018

Quotes from media that serverless is the future

Quotes from research saying serverless is the future

Serverless
today

(all else is not equal)

• FaaS is used mostly for simple or coarse-grained tasks

• Stateless, embarrassingly parallel tasks, simple workflows
• ETL, software testing, API middleware, image processing, etc.

• Glue to other serverless backends

• Lots of problems are limiting scope

• Poor performance (vs time to run actual code)
• Poor handling of state
• Composition, error handling, communication, coordination are

hard
• No accelerators
• Very resource-inefficient and costly for serverless provider

• Orders of magnitude too slow and inefficient for many
“killer” apps

• Microservices, ML inference, …
9

• Initially built with Lambda and Step Functions
• “(…) good choice for building the service quickly.”

• Too many state transitions on StepFunctions (slow, $$)
• Every frame -> S3 -> Lambda ($$)
• Moved to Elastic Container Service

• Frame data does not leave container
• Had to replicate containers, implement load balancer manually

Amazon Prime video moves from serverless to monolith

How do we get there?

• Radically increase
• Scope: what is serverless good for?

• From x% -> 99% of applications

• Performance: closer to hardware limits
• From ms -> µs

• Efficiency: make it cost effective
• Time: minimize overheads (non-billable time!)

• Space: from 102 to 105 per node

11

Performance
ms -> µs

Scope
x% -> 99%

Efficiency
Density/cost

102 -> 105

Increasing
scope

• “Serverless should be the default choice

Only go away for niche use cases.”
Sebastian Burckhardt (paraphrased)

Increasing
scope

• Programming model

• Lots of great research here
• Many “X as serverless” papers

• Stateful computation
• Azure Durable Functions, Step Functions

• Correct
• Beldi [OSDI’20]

• Transformation
• Crucial [ACM ToSEM v31i3], Wukong [SoCC’20]

• …

Increasing
scope

• Improving performance

• Reducing overheads

• Reducing complexity

• and lots of other things must be right

• Security, debugging, observability, pricing, …

Increasing
scope • Changes the interface to tangibles:

• Provider chooses resources (CPU, memory, arch)

• Exposes Price, Performance choices
• Points in the Pareto front or

• Best point given a user preference for $ or perf

• Best performance given a budget

• Could also include carbon

EuroSys’23, Wednesday 14:50

How do we get there?

• Radically increase
• Scope: what is serverless good for?

• From x% -> 99% of applications

• Performance: closer to hardware limits
• From ms -> µs

• Efficiency: make it cost effective
• Time: minimize overheads (non-billable time!)

• Space: from 102 to 105 per node

16

Performance
ms -> µs

Scope
x% -> 99%

Efficiency
Density/cost

102 -> 105

Provider
challenges

Performance
and
efficiency

© Jorge Royan / http://www.royan.com.ar / CC BY-SA 3.0

http://www.royan.com.ar/
https://creativecommons.org/licenses/by-sa/3.0/

Performance and efficiency

Legend: ✓ - Feature helps achieve the goal
 C - Feature conflicts with the goal

G
o

a
ls

Features

H
yp

e
rv

is
o

r

Is
o

la
ti

o
n

M
em

o
ry

 s
h

ar
in

g

C
ac

h
in

g

D
ir

ec
t

H
W

 A
cc

es
s

Lo
ca

l S
ch

ed
u

lin
g

In
st

ru
ct

io
n

P
re

fe
tc

h
in

g

Ef
fi

ci
en

t
C

o
n

tr
o

l
P

la
n

e

M
in

im
al

is
t

En
vi

ro
n

m
e

n
t

Sn
ap

sh
o

ts

Fast Cold Starts

Fast Warm Starts

High Density

Efficient Data Sharing

Locality

Fast cold starts

• A lot of research!
• 34 out of 164 papers in [1]

• Goal: from many seconds to sub-ms

Reserved

Dispatch
delay

Billed

Keep-alive

DecommissionCold
Start

Time

[1] Jinfeng Wen et al. “Rise of the Planet of Serverless Computing: A Systematic Review”. ACM TOSEM, Jan 2023

Fast cold starts

• Snapshots
• Catalyst [ASPLOS’19], REAP[ASPLOS’20], FaaSnap [EuroSys’22],

 Faasm [ATC’20], Virtines [EuroSys’22],…

• Sharing compiler (JIT) state
• Hot starts [HotOS’21]

• Minimalist environment
• Firecracker [NSDI’20], Virtines, Faasm,…

• Reducing cold start numbers
• Serverless in the Wild [ATC’19], FaasCache [ASPLOS’21]

Fast cold starts – scale out

• Increase scope to very elastic applications
• E.g., wide DAGs

• Efficient control plane is critical and under-studied
• Networking: Particle [SoCC’20], Mohan et al. [HotCloud’19]

• Do we always need full-fledged networking?

• Next session:
• Work in Progress: The Neglected Cost of Serverless Cluster

Management. Lazar Cvetković (ETH Zürich); me; Ana Klimovic (ETH Zürich)

• Cluster schedulers not designed to schedule very ephemeral sandboxes

• What is special about serverless for cluster schedulers?

Cold starts & hypervisors

• Tradeoff between isolation cold starts?
• Faasm [ATC’20]

• Firecracker [NSDI’20], REAP [ASPLOS’20], FaaSnap [EuroSys’22]

• Virtines [EuroSys’22]

FaaSnap [EuroSys’22]

~5µs ~50µs ~500µs

Virtines [EuroSys’22]

Performance and Efficiency

Legend: ✓ - Feature helps achieve the goal
 C - Feature conflicts with the goal

G
o

a
ls

Features

H
yp

e
rv

is
o

r

Is
o

la
ti

o
n

M
em

o
ry

 s
h

ar
in

g

C
ac

h
in

g

D
ir

ec
t

H
W

 A
cc

es
s

Lo
ca

l S
ch

ed
u

lin
g

In
st

ru
ct

io
n

P
re

fe
tc

h
in

g

Ef
fi

ci
en

t
C

o
n

tr
o

l
P

la
n

e

M
in

im
al

is
t

En
vi

ro
n

m
e

n
t

Sn
ap

sh
o

ts

C*✓✓✓Fast Cold Starts

Fast Warm Starts

High Density

Efficient Data Sharing

Locality

Fast warm starts

• Two components:
• Invocation / Return – “killer microseconds”

• Computation – ideally native speeds (but WASM is not bad!)

• Gap to RPC systems: ~2-3 Orders of magnitude, ms -> µs

Demikernel [SOSP’21]

C
lo

u
d

b
u

rs
t

[V
LD

B
’2

0
]

Fast warm starts

• Is this gap fundamental?

• Direct access to hardware
• E.g., DPDK + LibOS

• Tight control of threading, core scheduling

• Conflicts with fast cold start, density
• Some designs: dedicated cores (polling)
• Fixed-size buffers (partition memory)

• Tradeoff
• One copy vs single core polling

• E.g. Shenango [NSDI’19], SNAP [SOSP’19]

• Vs Hypervisor
• Can we achieve the same performance under virtualization?

Example from Shenango (not the Shenango design)

Google’s SNAP design

Fast warm starts

• Instruction pre-fetching
• Jukebox [ISCA’22]: combat thrashing of instruction cache with lukewarm

functions

• Sharing compiler (JIT) state
• Hot starts [HotOS’21]

• Local scheduling
• e.g., Nigthcore [ASPLOS’21]: bypass cluster scheduler if next function can be

run locally

Performance and efficiency

Legend: ✓ - Feature helps achieve the goal
 C - Feature conflicts with the goal

G
o

a
ls

Features

H
yp

e
rv

is
o

r

Is
o

la
ti

o
n

M
em

o
ry

 s
h

ar
in

g

C
ac

h
in

g

D
ir

ec
t

H
W

 A
cc

es
s

Lo
ca

l S
ch

ed
u

lin
g

In
st

ru
ct

io
n

P
re

fe
tc

h
in

g

Ef
fi

ci
en

t
C

o
n

tr
o

l
P

la
n

e

M
in

im
al

is
t

En
vi

ro
n

m
e

n
t

Sn
ap

sh
o

ts

C*✓✓✓Fast Cold Starts

Fast Warm Starts

High Density

Efficient Data Sharing

Locality

C

C✓✓✓

C

Increasing density

• Crucial for cost reduction

• With elasticity, can greatly improve sustainability
• Both scope 2 (electricity), and scope 3 (embedded carbon)

Increasing density

• Minimalist environment
• Faasm [ATC’20]

• Wasm

• 12x more instances than Docker

 (no-op function)

• Firecracker
• Smaller VMM, simplified Linux

• Unikernels
• e.g., SEUSS [EuroSys’20], page sharing and COW

• Even simpler
• Virtines [EuroSys’22]

• Recall conflict with direct HW access (not fundamental)

SEUSS [EuroSys’20]

Performance and efficiency

Legend: ✓ - Feature helps achieve the goal
 C - Feature conflicts with the goal

G
o

a
ls

Features

H
yp

e
rv

is
o

r

Is
o

la
ti

o
n

M
em

o
ry

 s
h

ar
in

g

C
ac

h
in

g

D
ir

ec
t

H
W

 A
cc

es
s

Lo
ca

l S
ch

ed
u

lin
g

In
st

ru
ct

io
n

P
re

fe
tc

h
in

g

Ef
fi

ci
en

t
C

o
n

tr
o

l
P

la
n

e

M
in

im
al

is
t

En
vi

ro
n

m
e

n
t

Sn
ap

sh
o

ts

C*C✓✓✓

C✓✓✓

C C*✓

Fast Cold Starts

Fast Warm Starts

High Density

Efficient Data Sharing

Locality

Efficient data sharing

• Controlled shared memory
• Faasm allows for shared memory among functions (Wasm)

• Distributed KVS across functions

• Distributed caching among instances
• OFC [EuroSys’21], Faa$T [SoCC’21] (many reads still cross the network)

• Efficient storage
• Pocket [OSDI’18], Locust [ATC’21]

• Can we use fast remote memory (e.g., CXL)?

Efficient data sharing

• vs Virtualization
• Initially at odds, not fundamental

• Need us-scale signaling to share among VMs, SENDUIPI promising [1]

[1] https://lpc.events/event/11/contributions/985/attachments/756/1417/User_Interrupts_LPC_2021.pdf

Performance and efficiency

Legend: ✓ - Feature helps achieve the goal
 C - Feature conflicts with the goal

G
o

a
ls

Features

H
yp

e
rv

is
o

r

Is
o

la
ti

o
n

M
em

o
ry

 s
h

ar
in

g

C
ac

h
in

g

D
ir

ec
t

H
W

 A
cc

es
s

Lo
ca

l S
ch

ed
u

lin
g

In
st

ru
ct

io
n

P
re

fe
tc

h
in

g

Ef
fi

ci
en

t
C

o
n

tr
o

l
P

la
n

e

M
in

im
al

is
t

En
vi

ro
n

m
e

n
t

Sn
ap

sh
o

ts

C*C✓✓✓

C✓✓✓

C*C✓

C✓✓

Fast Cold Starts

Fast Warm Starts

High Density

Efficient Data Sharing

Locality

Locality

• Plain serverless does not have a
notion of locality
• Despite reusing containers

• Palette [EuroSys’23] allows apps to
express locality through hints

• Run where data is

• Programming model
• Pherormone [NSDI’23], Cloudburst

[VLDB’20], Ray [OSDI’18]

• Function shipping
• Shredder [SoCC’19]

EuroSys’23, Wednesday 14:50

Slaugther et al., “Task Bench: A Parameterized Benchmark for Evaluating Parallel Runtime Performance.”, SC’20

Performance and efficiency

Legend: ✓ - Feature helps achieve the goal
 C - Feature conflicts with the goal

G
o

a
ls

Features

H
yp

e
rv

is
o

r

Is
o

la
ti

o
n

M
em

o
ry

 s
h

ar
in

g

C
ac

h
in

g

D
ir

ec
t

H
W

 A
cc

es
s

Lo
ca

l S
ch

ed
u

lin
g

In
st

ru
ct

io
n

P
re

fe
tc

h
in

g

Ef
fi

ci
en

t
C

o
n

tr
o

l
P

la
n

e

M
in

im
al

is
t

En
vi

ro
n

m
e

n
t

Sn
ap

sh
o

ts

C*C✓✓✓

C✓✓✓

C*C✓

C✓✓

✓✓✓

Fast Cold Starts

Fast Warm Starts

High Density

Efficient Data Sharing

Locality

How do we get there?

• Radically increase
• Scope: what is serverless good for?

• From x% -> 99% of applications

• Performance: closer to hardware limits
• From ms -> µs

• Efficiency: make it cost effective
• Time: minimize overheads (non-billable time!)

• Space: from 102 to 105 per node

36

Performance
ms -> µs

Scope
x% -> 99%

Efficiency
Density/cost

102 -> 105

Conclusion • Serverless will be a large part of the future of the cloud!

• Exciting set of challenges

• Lots of work going on

• Density & multi-tenancy make it more interesting!

• "Plenty of room at the bottom“

• Do not be restricted by current offerings

• Assume they can change from the inside ;)

Collaborators

• Microsoft
• Íñigo Goiri, Enrique Saurez, Esha Choukse, Ricardo Bianchini, Sameh Elnikety

• Azure Functions Team

• External
• Ana Klimovic, Lazar Cvetković (ETH)

• Adam Belay, Gohar Chaudhry, Josh Fried (MIT)

• Benjamin Carver, Yue Cheng (GMU)

• Marco Canini (KAUST), Rodrigo Rodrigues (IST), Muhammad Bilal

• Mania Abdi (NEU/Google)

• Sam Ginzburg (Princeton), Charles Lin (Anyscale), Jose Faleiro

Thank you & Questions

• Contact us for collaborations, visits, internships & full-time positions!

	Title
	Slide 1: Research Challenges for a Future Serverless Cloud

	Intro
	Slide 2: Context
	Slide 3: Is the future of the cloud serverless?
	Slide 4: What is serverless?*
	Slide 5: What is serverless?*
	Slide 6: Is the future of the cloud serverless?
	Slide 7: Quotes from media that serverless is the future
	Slide 8: Quotes from research saying serverless is the future
	Slide 9: Serverless today (all else is not equal)
	Slide 10: Amazon Prime video moves from serverless to monolith
	Slide 11: How do we get there?

	Increasing Scope
	Slide 12: Increasing scope
	Slide 13: Increasing scope
	Slide 14: Increasing scope
	Slide 15: Increasing scope

	Provider Challenges
	Slide 16: How do we get there?
	Slide 17: Provider challenges Performance and efficiency
	Slide 18: Performance and efficiency

	Cold Starts
	Slide 19: Fast cold starts
	Slide 20: Fast cold starts
	Slide 21: Fast cold starts – scale out
	Slide 22: Cold starts & hypervisors
	Slide 23: Performance and Efficiency

	Warm Starts
	Slide 24: Fast warm starts
	Slide 25: Fast warm starts
	Slide 26: Fast warm starts
	Slide 27: Performance and efficiency

	Density
	Slide 28: Increasing density
	Slide 29: Increasing density
	Slide 30: Performance and efficiency

	Efficient Data Sharing
	Slide 31: Efficient data sharing
	Slide 32: Efficient data sharing
	Slide 33: Performance and efficiency

	Locality
	Slide 34: Locality
	Slide 35: Performance and efficiency
	Slide 36: How do we get there?

	Conclusion
	Slide 37: Conclusion
	Slide 38: Collaborators
	Slide 39: Thank you & Questions

