Research Challenges for a
Future Serverless Cloud

Rodrigo Fonseca

Azure Systems Research

SESAME Workshop
Rome, Italy, May 8, 2023

B8 Microsoft

Azure Systems Research

Cloud systems innovation at the core of Azure
aka.ms/AzSR

- Whoam I?

* Managing the Azure Systems Research group
(aka.ms/azsr)

* We do research in all aspects of cloud infrastructure
* | am not speaking for Azure Functions ©

Context

- | mention a lot of works here

* Most not mine!
* Any errors or omissions are my fault!

 Representing many, from Microsoft and external
collaborators

B® Microsoft

Azure Systems Research

Cloud systems innovation at the core of Azure
aka.ms/AzSR

“Research Challenges for a
Future Serverless Cloud”

s the future of the cloud serverless?

What is e Operationally

* “No-ops” — (almost) no configuration

serverless?* + Autoscaling down to 0

* Pay-per-use (rather than per allocation)
* Fine-grained billing
* Many services fit these
* e.g., Serverless DBs, KVS, OpenAl, ...
* Focus: serverless custom code
* Most popular: Function-as-a-Service, Containers-as-a-

rvi
*YDMV Service

What is Function-as-a-Service

* First model of mostly general computing to have all

Serve rleSS?* those characteristics

* Well-defined life-cycle: triggers, invocation

e Platform has access to source
* Optimization opportunity

e Limitations in duration, memory, communication, state
* Short, small, ephemeral, stateless

* Easier to pack, measure, autoscale, move!

*YDMV * Can improve resource utilization, sustainability

s the future of the cloud serverless?

= Azure
Select a VM size
No-ops
‘,O Search by VM size... EC2) Instance types N O a I Iocati O n

Showi , Sub
Instance typ

Why is Kubernetes So D o
: pent
Complicated? arguing about

Pay-per-use
Elastic
TS Kubernetes features

B oo

Time spent TWICE
building

serverless app

@adrianco, AWS, “Serverless First”

All else being equal: rational choice for users
+ competition among providers:
probably yes!

“...more than 20 percent of global enterprises will have
deployed serverless computing technologies by 2020.”
Gartner, Dec 2018

1 Reasons

Why Serverless is the Future

X ; apps
claudiobernasconi.ch PPs connected to clo

-8B Sam Krocnenburg [Follow)

Oct 21, 2015 7 min read

N
TRANSITIO
ps
5 (4) re and ap
b 019 ure Of sO a
13 septe™ -‘s th \
erless
Why s€ Survey Shows More than 75%

_ Use or Pl
In Next 18 Months A 1o Use Serverless

NEW:

Steps Back
S rless Computing: One Step Forward, Two Step
erve

i i kanti,
ier-Smith, Vikram Sree
in, Jose Faleiro, Joseph E. Gonzalez, Johann Schleier
llerstein, Jos \
Joseph M. He

Alexey Tumanov and Chenggang Wu
e @berkeley.edu
11 in,jmfaleiro,jegonzal, jssmith, vikrams,atumanov,cgwu} @
{hellerstein,j ,

Cloud Programming Simplified:
A Ber eley View on Serverless Computing

Eric Jonas
Anurag Khandelwa]
Karl Krauth

Johann S(rhl(.‘.i(.*.r-Smith
Qifan Py
Neeraja Yadwadkay
Ion Stoica

Vikram Sreekanti Chia-Che Tsai
Vaishaal Shankar Joao Carreira
Joseph E. Gonzaley Raluca Ada Popa

David A, Patterson

uc B(.’.I‘k(.‘.ll.‘.}’

server] essview@berke] ey.edu

“. we pPredict that (-..) serverless Computing wil| grow to dominate the

future of cloud computing.”

Serverless
today

(all else is not equal)

e FaaS is used mostly for simple or coarse-grained tasks
» Stateless, embarrassingly parallel tasks, simple workflows

e ETL, software testing, APl middleware, image processing, etc.
Glue to other serverless backends

* Lots of problems are limiting scope

Poor performance (vs time to run actual code)
Poor handling of state

ﬁorgposition, error handling, communication, coordination are
ar

No accelerators
Very resource-inefficient and costly for serverless provider

* Orders of magnitude too slow and inefficient for many
“killer” apps

Microservices, ML inference, ...

prime V|geo | Homepage Our Innovation

Scaling up the Prime Video

audio/video monitoring service and
reducing costs by 90%

The move from a distributed microservices architecture to a monolith
application helped achieve higher scale, resilience, and reduce costs.

Marcin Kolny
Mar 22, 2023

Initially built with Lambda and Step Functions
e “(...) good choice for building the service quickly.”

Too many state transitions on StepFunctions (slow, SS)
Every frame -> S3 -> Lambda (S$)

Moved to Elastic Container Service

* Frame data does not leave container
* Had to replicate containers, implement load balancer manually

How do we get there?

e Radically increase
* Scope: what is serverless good for?
* From x% -> 99% of applications
* Performance: closer to hardware limits
* From ms -> s
 Efficiency: make it cost effective

 Time: minimize overheads (non-billable time!)
* Space: from 102 to 10° per node

A
Scope

X% -> 99%

Efficiency
Density/cost

Performance
102 -> 10°

ms -> s

11

| ncreasi ng e “Serverless should be the default choice

Only go away for niche use cases.”
Sebastian Burckhardt (paraphrased)

scope

Increasing * Programming model

* Lots of great research here

SCO p e Many “X as serverless” papers
Stateful computation

e Azure Durable Functions, Step Functions
Correct

* Beldi [OSDI’'20]
Transformation

* Crucial [ACM ToSEM v31i3], Wukong [SoCC’20]

Increasing * Improving performance
scope * Reducing overheads

* Reducing complexity

* and lots of other things must be right

e Security, debugging, observability, pricing, ...

With Great Freedom Comes Great Opportunity:
Rethinking Resource Allocation for
Serverless Functions

Muhammad Bilal* Marco Canini
IST(ULisboa)/INESC-ID and UCLouvain KAUST
Rodrigo Fonseca Rodrigo Rodrigues
. Azure Systems Research IST(ULisboa)/INESC-ID
| n C re a S l n g EuroSys’23, Wednesday 14:50
scope * Changes the interface to tangibles:

* Provider chooses resources (CPU, memory, arch)

* Exposes Price, Performance choices
* Points in the Pareto front or
 Best point given a user preference for S or perf
* Best performance given a budget

e Could also include carbon

How do we get there?

A

* Radically increase Scope
e Scope: what is serverless good for? X% ->99%
* From x% -> 99% of applications
* Performance: closer to hardware limits
* From ms -> s
 Efficiency: make it cost effective

* Time: minimize overheads (non-billable time!) Performance
* Space: from 102 to 10° per node ms -> Us

Efficiency
Density/cost
102 -> 10°

16

Provider
challenges

Performance
and
efficiency

= = =

S
e

© Jorge Royan / http//www.royan.com.ar / CC BY-SA3.0

\\

http://www.royan.com.ar/
https://creativecommons.org/licenses/by-sa/3.0/

Performance and efficiency

Legend: V' - Feature helps achieve the goal
C - Feature conflicts with the goal

Goals

Snapshots

Fast Cold Starts

Fast Warm Starts
High Density
Efficient Data Sharing

Locality

Minimalist
Environment

Efficient Control

Plane

Instruction

Prefetching

Features

Local Scheduling

Direct HW Access

Caching

Memory sharing

Hypervisor

Isolation

Fast cold starts

Dispatch Keep-alive

d/elay \/ \

Cold ‘ ‘ Decommission
Sta/rtl>
v >Time

-

Billed

A
\ 4

Reserved

* A lot of research!
e 34 out of 164 papersin [1]

e Goal: from many seconds to sub-ms

[1] Jinfeng Wen et al. “Rise of the Planet of Serverless Computing: A Systematic Review”. ACM TOSEM, Jan 2023

Fast cold starts

* Snapshots
e Catalyst [ASPLOS’19], REAP[ASPLOS’20], FaaSnap [EuroSys’22],
Faasm [ATC’20], Virtines [EuroSys’22],...

e Sharing compiler (JIT) state
* Hot starts [HotOS’21]

* Minimalist environment
* Firecracker [NSDI’20], Virtines, Faasm,...

* Reducing cold start numbers
* Serverless in the Wild [ATC’19], FaasCache [ASPLOS’21]

Fast cold starts — scale out

* Increase scope to very elastic applications
* E.g., wide DAGs

e Efficient control plane is critical and under-studied
* Networking: Particle [SoCC’20], Mohan et al. [HotCloud’19]
* Do we always need full-fledged networking?

* Next session:

* Work in Progress: The Neglected Cost of Serverless Cluster
Management. Lazar Cvetkovi¢ (ETH Zirich); me; Ana Klimovic (ETH Zlrich)

* Cluster schedulers not designed to schedule very ephemeral sandboxes
 What is special about serverless for cluster schedulers?

Containers VMs Unikernel SFI Faaslet

. Memory safety v v v v v
Cold starts & hypervisors — ; mombbe 7 2 ¢ % 7
2 Efficient state sharing X X X X v
Shared filesystem v X X v v
.. Initialisation time 100ms 100ms 10ms 10ps 1ms
g § Memory footprint MBs MBs KBs Bytes KBs
4= Multi-language v v v X v

* Tradeoff between isolation cold starts?

 Faasm [ATC’20]
* Firecracker [NSDI’20], REAP [ASPLOS’20], FaaSnap [EuroSys’22]
* Virtines [EuroSys’22]

time (ms)

1750

1500 A

1250 A

1000 ~

750 A

500 ~

250 1

I Firecracker

Il REAP

mm FaaSnap
Cached

100 Ao eS n e 00 \'8 \
B @I e e e ™ e
¢ (@

93
Record phase input A, test phase input B

cO

FaaSnap [EuroSys’22]

Table 1: Isolation approaches for serverless (Initialisation times
include ahead-of-time snapshot restore where applicable [16,25,61].)

AMD EPYC 7281 (Server)

Process-
Wasp+
pthread
Wasp+C-
Wasp+CA-

vmrun-

e .
IF-.-.. P

%%..
%wm
M+W_"m .

~5Us

104 105 108

Latency (cycles)

~50us
Virtines [EuroSys’22]

~500us

Performance and Efficiency

Legend: V' - Feature helps achieve the goal
C - Feature conflicts with the goal

Goals

Fast Cold Starts

Fast Warm Starts
High Density
Efficient Data Sharing

Locality

Features
_ ® 7 o
£ =03 £
2 - > ©
n 0 @) c v ; n o
) = & Q = N > v c
% ES 84 3528 2 ¥ £ g £
Q = .= c e £ U ©] = £ a ©
S S g2 E8 2¢ 3§ & & v =7
A > U wWwo £ o B) Q = T v
/ V4 V4 C*

Fast warm starts

Cloudburst [VLDB’20]

* Two components:

* |Invocation / Return — “killer microseconds”

* Computation — ideally native speeds (but WASM is not bad!)
* Gap to RPC systems: ~2-3 Orders of magnitude, ms -> us

Laten @

E;%ﬂﬁ.ilmﬁ

Dask A+S3 CB (Single)
Cloudburst SAND A+Dynamo Step-Fns A (Single)

Figure 1: Median (bar) and 99th percentile (whisker) latency
for square(increment(x: int)). Cloudburst matches the
best distributed Python systems and outperforms other
FaaS systems by over an order of magnitude (56.1).

g

Avg Laten

26
20.8
15.6
10.4

5.2
0

® Catmint Catnip (UDP) Catnip (TCP)
Shenango ® Caladan ® eRPC

- _ﬁ'— e

3 6 9 12 15 18
Throughput (Gpbs)

Demikernel [SOSP’21]

Kernel Bypass

Fast warm starts App“caﬂoiJ

(Kernel %’ core

=5 EBS
. NIC packet queues
* Direct access to hardware

» E.g., DPDK + LibOS
* Tight control of threading, core scheduling

Example from Shenango (not the Shenango design)

< shared memory reads/writes

* Conflicts with fast cold start, density oot | oG
. . . serspace process
. Spme o!e5|gns. dedlcatgq cores (polling) <Y PR
* Fixed-size buffers (partition memory) App 2 Network Module
AT A
* Tradeoff 5 o NG

* One copy vs single core polling
e E.g.Shenango [NSDI’19], SNAP [SOSP’19]

* /s Hypervisor

Google’s SNAP design

Fast warm starts

* Instruction pre-fetching
e Jukebox [ISCA’22]: combat thrashing of instruction cache with lukewarm
functions
e Sharing compiler (JIT) state
* Hot starts [HotOS'21]

* Local scheduling

* e.g., Nigthcore [ASPLOS’21]: bypass cluster scheduler if next function can be
run locally

Performance and efficiency

Legend: V' - Feature helps achieve the goal

C - Feature conflicts with the goal Features
—)
o £
— ¥ =
cC C
» 5828 §& ¢
e —_— E — = = -
< © c c 0 O R
o — = = - Q e
') c 'S L C = “5 8
c = c £080 9 & o
) > U wWwo £ o '
Fast Cold Starts v v v
v Fast Warm Starts v v
(@)
o : .
G High Density

Efficient Data Sharing

Locality

Direct HW Access
Memory sharing

Caching
Hypervisor
Isolation

*

(@]
@]

(@)

Increasing density

* Crucial for cost reduction

e With elasticity, can greatly improve sustainability
* Both scope 2 (electricity), and scope 3 (embedded carbon)

Docker Faaslets Proto-Faaslets vs. Docker

Initialisation 2.8s 5.2 ms 0.5 ms S5.6K x

. . CPU cycles 251M 14K 650 385K x

| ﬂCreaSIHg den5|ty PSS memory 1.3MB 200KB 90 KB 15x
RSS memory 5.0 MB 200 KB 90 KB 57 x

Capacity ~8 K ~70 K >100 K 12 %

Table 3: Comparison of Faaslets vs. container cold starts

(no-op function)

e Minimalist environment
* Faasm [ATC’20]

* Wasm
* 12x more instances than Docker
(no-op function) Isolation Method Creation Rate (per second) Cache Density
. Fi k Firecracker microVM 1.3 450
Irecracker Docker w/ overlay2 fs 5.3 3000
* Smaller VMM, simplified Linux Linux process 45 4200
e Unikernels SEUSS UC 128.6 54000

* e.g., SEUSS [EuroSys’20], page sharing and COW SEUSS [EuroSys’20]

* Even simpler
* Virtines [EuroSys’22]

* Recall conflict with direct HW access (not fundamental)

Performance and efficiency

Legend: V' - Feature helps achieve the goal

C - Feature conflicts with the goal Features
—)
o £
— ¥ =
cC c
» 5828 §& ¢
e —_— E — = = -
< © c c RS, Q
o — = = - Q e
') c 'S L C = 4= 8
c = c &8 v v o
) > U wWwo £ o '
Fast Cold Starts v v v
v Fast Warm Starts v v
S
O] High Density v

Efficient Data Sharing

Locality

Direct HW Access
Memory sharing

Caching
Hypervisor
Isolation

*

@]
@]

Efficient data sharing

e Controlled shared memory
e Faasm allows for shared memory among functions (Wasm)
 Distributed KVS across functions

* Distributed caching among instances
* OFC [EuroSys’21], FaaST [SoCC’21] (many reads still cross the network)

e Efficient storage
* Pocket [OSDI’18], Locust [ATC'21]

Efficient data sharing

* vs Virtualization
* Initially at odds, not fundamental
* Need us-scale signaling to share among VMs, SENDUIPI promising [1]

Relative IPC Latency
(normalized to User IPI)

20.0
18.0
16.0
14.0
12.0
10.0
8.0
6.0
4.0
2.0
0.0

Signal Pipe Eventfd UserIPl User IPI

(blocked) (running)

[1] https://Ipc.events/event/11/contributions/985/attachments/756/1417/User_Interrupts_LPC_2021.pdf

Performance and efficiency

Legend: V' - Feature helps achieve the goal

C - Feature conflicts with the goal Features
—)
o £
— ¥ =
cC c
» 5828 §& ¢
e —_— E — = = -
< © c c RS, Q
o — = = - Q e
') c 'S L C = 4= 8
c = c &8 v v o
) > U wWwo £ o '
Fast Cold Starts v v v
v Fast Warm Starts v v
S
O] High Density v

Efficient Data Sharing

Locality

Direct HW Access
Memory sharing

Caching
Hypervisor
Isolation

*

@]
@]

Locality

* Plain serverless does not have a
notion of locality
* Despite reusing containers

* Palette [EuroSys’23] allows apps to
express locality through hints

e Run where data is

* Programming model
* Pherormone [NSDI’23], Cloudburst
[VLDB’20], Ray [OSDI'18]
* Function shipping
e Shredder [SoCC’19]

Runtime (sec)

Palette Load Balancing: Locality Hints for Serverless

Mania Abdi"*

Northeastern University

José M Faleiro®

Unaffil

iated

Ricardo Bianchini
Azure Systems Research

160 -

140 -

120 A

100 A

80

60

40 A

20

—

"

Functions
Samuel Ginzburg’ Charles Lin"
Princeton University Anyscale Inc.
Tigo Goiri Gohar Chaudhry
Azure Systems Research Azure Systems Research
Daniel S. Berger Rodrigo Fonseca

Azure Systems Research Azure Systems Research

EuroSys’23, Wednesday 14:50

Oblivious: Random 1 Optimal

il

e ERE

trivigy

no\Cofhm C/

treerando Stencl/ ltenC// _Zd tO) aly ﬁct n@arest

. Sare ’00’1

Slaugther et al., “Task Bench: A Parameterized Benchmark for Evaluating Parallel Runtime Performance.”, SC'20

Performance and efficiency

Legend: V' - Feature helps achieve the goal

C - Feature conflicts with the goal Features
—)
o £
— ¥ =
cC C
» 5828 §& ¢
e —_— E — = = -
< © c c RS, Q
o — = = - Q e
') c 'S L C = “5 8
c = c £080 9 & o
) > U wWwo £ o '
Fast Cold Starts v v v
v Fast Warm Starts v v
S
O] High Density v

Efficient Data Sharing

Locality v

Direct HW Access
Memory sharing

Caching
Hypervisor
Isolation

*

@]
@]

How do we get there?

e Radically increase
* Scope: what is serverless good for?
* From x% -> 99% of applications
* Performance: closer to hardware limits
* From ms -> s
 Efficiency: make it cost effective

 Time: minimize overheads (non-billable time!)
* Space: from 102 to 10° per node

A
Scope

X% -> 99%

Efficiency
Density/cost

Performance
102 -> 10°

ms -> s

36

CO N Cl U SiO N » Serverless will be a large part of the future of the cloud!

Exciting set of challenges

* Lots of work going on

Density & multi-tenancy make it more interesting!

"Plenty of room at the bottom*

Do not be restricted by current offerings

* Assume they can change from the inside ;)

Collaborators

* Microsoft
* [Rigo Goiri, Enrique Saurez, Esha Choukse, Ricardo Bianchini, Sameh Elnikety
* Azure Functions Team

e External
* Ana Klimovic, Lazar Cvetkovi¢ (ETH)
Adam Belay, Gohar Chaudhry, Josh Fried (MIT)
Benjamin Carver, Yue Cheng (GMU)
Marco Canini (KAUST), Rodrigo Rodrigues (IST), Muhammad Bilal
Mania Abdi (NEU/Google)
Sam Ginzburg (Princeton), Charles Lin (Anyscale), Jose Faleiro

Thank you & Questions

at Microsoft

Azure Systems Research

Cloud systems innovation at the core of Azure

aka.ms/AzSR

* Contact us for collaborations, visits, internships & full-time positions!

	Title
	Slide 1: Research Challenges for a Future Serverless Cloud

	Intro
	Slide 2: Context
	Slide 3: Is the future of the cloud serverless?
	Slide 4: What is serverless?*
	Slide 5: What is serverless?*
	Slide 6: Is the future of the cloud serverless?
	Slide 7: Quotes from media that serverless is the future
	Slide 8: Quotes from research saying serverless is the future
	Slide 9: Serverless today (all else is not equal)
	Slide 10: Amazon Prime video moves from serverless to monolith
	Slide 11: How do we get there?

	Increasing Scope
	Slide 12: Increasing scope
	Slide 13: Increasing scope
	Slide 14: Increasing scope
	Slide 15: Increasing scope

	Provider Challenges
	Slide 16: How do we get there?
	Slide 17: Provider challenges Performance and efficiency
	Slide 18: Performance and efficiency

	Cold Starts
	Slide 19: Fast cold starts
	Slide 20: Fast cold starts
	Slide 21: Fast cold starts – scale out
	Slide 22: Cold starts & hypervisors
	Slide 23: Performance and Efficiency

	Warm Starts
	Slide 24: Fast warm starts
	Slide 25: Fast warm starts
	Slide 26: Fast warm starts
	Slide 27: Performance and efficiency

	Density
	Slide 28: Increasing density
	Slide 29: Increasing density
	Slide 30: Performance and efficiency

	Efficient Data Sharing
	Slide 31: Efficient data sharing
	Slide 32: Efficient data sharing
	Slide 33: Performance and efficiency

	Locality
	Slide 34: Locality
	Slide 35: Performance and efficiency
	Slide 36: How do we get there?

	Conclusion
	Slide 37: Conclusion
	Slide 38: Collaborators
	Slide 39: Thank you & Questions

